
Public

SMART CONTRACT AUDIT REPORT

for

UXSwap

Prepared By: Xiaomi Huang

PeckShield
November 26, 2023

1/18 PeckShield Audit Report #: 2023-275

contact@peckshield.com

Public

Document Properties

Client UXSwap
Title Smart Contract Audit Report
Target UXSwap
Version 1.0
Author Xuxian Jiang
Auditors Colin Zhong, Xuxian Jiang
Reviewed by Xiaomi Huang
Approved by Xuxian Jiang
Classification Public

Version Info

Version Date Author(s) Description
1.0 November 26, 2023 Xuxian Jiang Final Release
1.0-rc1 November 25, 2023 Xuxian Jiang Release Candidate #1

Contact

For more information about this document and its contents, please contact PeckShield Inc.

Name Xiaomi Huang
Phone +86 183 5897 7782
Email contact@peckshield.com

2/18 PeckShield Audit Report #: 2023-275

Public

Contents

1 Introduction 4
1.1 About UXSwap . 4
1.2 About PeckShield . 5
1.3 Methodology . 5
1.4 Disclaimer . 7

2 Findings 9
2.1 Summary . 9
2.2 Key Findings . 10

3 Detailed Results 11
3.1 Improved Allowance Management in UXSwapV1 . 11
3.2 Accommodation of Non-ERC20-Compliant Tokens 12
3.3 Trust Issue of Admin Keys . 15

4 Conclusion 17

References 18

3/18 PeckShield Audit Report #: 2023-275

Public

1 | Introduction

Given the opportunity to review the design document and related source code of the UXSwap contract,
we outline in the report our systematic approach to evaluate potential security issues in the smart
contract implementation, expose possible semantic inconsistencies between smart contract code and
design document, and provide additional suggestions or recommendations for improvement. Our
results show that the given version of smart contracts can be further improved due to the presence
of several issues related to either security or performance. This document outlines our audit results.

1.1 About UXSwap

UXLINK is a block-chain based social system for mass adopters to build social assets and trade cryptos,
with the vision to be a trusted infrastructure product for mass adoption of inclusive finance and
trading. The audited UXSwap contract is a wrapper to interact with UNISWAP_V2_ROUTER for token
swaps. The basic information of the audited protocol is as follows:

Table 1.1: Basic Information of The UXSwap

Item Description
Name UXSwap
Type EVM Smart Contract

Platform Solidity
Audit Method Whitebox

Latest Audit Report November 26, 2023

In the following, we show the deployment address of the audited contract.

• https://goerli.etherscan.io/address/0x80bccd645580dcabc9fe7b7c33cc208a0db83300

And here is the new deployment address after fixes for the issues found in the audit have been
applied:

• https://goerli.etherscan.io/address/0x05931bfdaa238691c2488fb83a1dc5e48c6df2d7

4/18 PeckShield Audit Report #: 2023-275

Public

1.2 About PeckShield

PeckShield Inc. [7] is a leading blockchain security company with the goal of elevating the secu-
rity, privacy, and usability of current blockchain ecosystems by offering top-notch, industry-leading
services and products (including the service of smart contract auditing). We are reachable at Telegram
(https://t.me/peckshield), Twitter (http://twitter.com/peckshield), or Email (contact@peckshield.com).

Table 1.2: Vulnerability Severity Classification

Im
pa
ct

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

High Medium Low

Likelihood

1.3 Methodology

To standardize the evaluation, we define the following terminology based on OWASP Risk Rating
Methodology [6]:

• Likelihood represents how likely a particular vulnerability is to be uncovered and exploited in
the wild;

• Impact measures the technical loss and business damage of a successful attack;

• Severity demonstrates the overall criticality of the risk.

Likelihood and impact are categorized into three ratings: H, M and L, i.e., high, medium and
low respectively. Severity is determined by likelihood and impact and can be classified into four
categories accordingly, i.e., Critical, High, Medium, Low shown in Table 1.2.

To evaluate the risk, we go through a list of check items and each would be labeled with
a severity category. For one check item, if our tool or analysis does not identify any issue, the
contract is considered safe regarding the check item. For any discovered issue, we might further
deploy contracts on our private testnet and run tests to confirm the findings. If necessary, we would

5/18 PeckShield Audit Report #: 2023-275

https://t.me/peckshield
http://twitter.com/peckshield
contact@peckshield.com

Public

Table 1.3: The Full List of Check Items

Category Check Item

Basic Coding Bugs

Constructor Mismatch
Ownership Takeover

Redundant Fallback Function
Overflows & Underflows

Reentrancy
Money-Giving Bug

Blackhole
Unauthorized Self-Destruct

Revert DoS
Unchecked External Call

Gasless Send
Send Instead Of Transfer

Costly Loop
(Unsafe) Use Of Untrusted Libraries
(Unsafe) Use Of Predictable Variables
Transaction Ordering Dependence

Deprecated Uses
Semantic Consistency Checks Semantic Consistency Checks

Advanced DeFi Scrutiny

Business Logics Review
Functionality Checks

Authentication Management
Access Control & Authorization

Oracle Security
Digital Asset Escrow
Kill-Switch Mechanism

Operation Trails & Event Generation
ERC20 Idiosyncrasies Handling
Frontend-Contract Integration

Deployment Consistency
Holistic Risk Management

Additional Recommendations

Avoiding Use of Variadic Byte Array
Using Fixed Compiler Version
Making Visibility Level Explicit
Making Type Inference Explicit

Adhering To Function Declaration Strictly
Following Other Best Practices

6/18 PeckShield Audit Report #: 2023-275

Public

additionally build a PoC to demonstrate the possibility of exploitation. The concrete list of check
items is shown in Table 1.3.

In particular, we perform the audit according to the following procedure:

• Basic Coding Bugs: We first statically analyze given smart contracts with our proprietary static
code analyzer for known coding bugs, and then manually verify (reject or confirm) all the issues
found by our tool.

• Semantic Consistency Checks: We then manually check the logic of implemented smart con-
tracts and compare with the description in the white paper.

• Advanced DeFi Scrutiny: We further review business logics, examine system operations, and
place DeFi-related aspects under scrutiny to uncover possible pitfalls and/or bugs.

• Additional Recommendations: We also provide additional suggestions regarding the coding and
development of smart contracts from the perspective of proven programming practices.

To better describe each issue we identified, we categorize the findings with Common Weakness
Enumeration (CWE-699) [5], which is a community-developed list of software weakness types to
better delineate and organize weaknesses around concepts frequently encountered in software devel-
opment. Though some categories used in CWE-699 may not be relevant in smart contracts, we use
the CWE categories in Table 1.4 to classify our findings.

1.4 Disclaimer

Note that this security audit is not designed to replace functional tests required before any software
release, and does not give any warranties on finding all possible security issues of the given smart
contract(s) or blockchain software, i.e., the evaluation result does not guarantee the nonexistence
of any further findings of security issues. As one audit-based assessment cannot be considered
comprehensive, we always recommend proceeding with several independent audits and a public bug
bounty program to ensure the security of smart contract(s). Last but not least, this security audit
should not be used as investment advice.

7/18 PeckShield Audit Report #: 2023-275

Public

Table 1.4: Common Weakness Enumeration (CWE) Classifications Used in This Audit

Category Summary
Configuration Weaknesses in this category are typically introduced during

the configuration of the software.
Data Processing Issues Weaknesses in this category are typically found in functional-

ity that processes data.
Numeric Errors Weaknesses in this category are related to improper calcula-

tion or conversion of numbers.
Security Features Weaknesses in this category are concerned with topics like

authentication, access control, confidentiality, cryptography,
and privilege management. (Software security is not security
software.)

Time and State Weaknesses in this category are related to the improper man-
agement of time and state in an environment that supports
simultaneous or near-simultaneous computation by multiple
systems, processes, or threads.

Error Conditions,
Return Values,
Status Codes

Weaknesses in this category include weaknesses that occur if
a function does not generate the correct return/status code,
or if the application does not handle all possible return/status
codes that could be generated by a function.

Resource Management Weaknesses in this category are related to improper manage-
ment of system resources.

Behavioral Issues Weaknesses in this category are related to unexpected behav-
iors from code that an application uses.

Business Logics Weaknesses in this category identify some of the underlying
problems that commonly allow attackers to manipulate the
business logic of an application. Errors in business logic can
be devastating to an entire application.

Initialization and Cleanup Weaknesses in this category occur in behaviors that are used
for initialization and breakdown.

Arguments and Parameters Weaknesses in this category are related to improper use of
arguments or parameters within function calls.

Expression Issues Weaknesses in this category are related to incorrectly written
expressions within code.

Coding Practices Weaknesses in this category are related to coding practices
that are deemed unsafe and increase the chances that an ex-
ploitable vulnerability will be present in the application. They
may not directly introduce a vulnerability, but indicate the
product has not been carefully developed or maintained.

8/18 PeckShield Audit Report #: 2023-275

Public

2 | Findings

2.1 Summary

Here is a summary of our findings after analyzing the implementation of the UXSwap contract. During
the first phase of our audit, we study the smart contract source code and run our in-house static
code analyzer through the codebase. The purpose here is to statically identify known coding bugs,
and then manually verify (reject or confirm) issues reported by our tool. We further manually review
business logics, examine system operations, and place DeFi-related aspects under scrutiny to uncover
possible pitfalls and/or bugs.

Severity # of Findings
Critical 0

High 0

Medium 1

Low 2

Informational 0

Total 3

We have so far identified a list of potential issues. For each uncovered issue, we have therefore
developed test cases for reasoning, reproduction, and/or verification. After further analysis and
internal discussion, we determined a few issues of varying severities that need to be brought up and
paid more attention to, which are categorized in the above table. More information can be found in
the next subsection, and the detailed discussions of each of them are in Section 3.

9/18 PeckShield Audit Report #: 2023-275

Public

2.2 Key Findings

Overall, these smart contracts are well-designed and engineered, though the implementation can
be improved by resolving the identified issues (shown in Table 2.1), including 1 medium-severity
vulnerability and 2 low-severity vulnerabilities.

Table 2.1: Key UXSwap Audit Findings

ID Severity Title Category Status
PVE-001 Low Improved Allowance Management in

UXSwapV1
Coding Practices Resolved

PVE-002 Low Accommodation of Non-ERC20-
Compliant Tokens

Coding Practices Resolved

PVE-003 Medium Trust Issue of Admin Keys Security Features Confirmed

Besides recommending specific countermeasures to mitigate these issues, we also emphasize that
it is always important to develop necessary risk-control mechanisms and make contingency plans,
which may need to be exercised before the mainnet deployment. The risk-control mechanisms need
to kick in at the very moment when the contracts are being deployed in mainnet. Please refer to
Section 3 for details.

10/18 PeckShield Audit Report #: 2023-275

Public

3 | Detailed Results

3.1 Improved Allowance Management in UXSwapV1

• ID: PVE-001

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: UXSwapV1

• Category: Coding Practices [4]

• CWE subcategory: CWE-1126 [1]

Description

The UXSwapV1 contract is designed to swap one token to another. To facilitate the interaction with
UNISWAP_V2_ROUTER, it also needs to efficiently manage the allowance that has been permitted to
UNISWAP_V2_ROUTER.

If we use the trade() as an example, it is designed to swap from tokenIn to tokenOut. Specifically,
this routine firstly transfers funds from the calling user, next approves uniswapRouter for the amountIn

allowance, then calls the actual trade function, and finally collects the commission fee, if any.
However, the allowance amount should be amountInAfterCommission, not amountIn 126.

104 f unc t i on t r a d e (
105 address token In ,
106 address tokenOut ,
107 uint256 amountIn ,
108 uint256 amountOutMin ,
109 address to ,
110 int256 code
111) ex te rna l {
112 r equ i r e (! _ b l a c k l i s t [msg . sender] , "User is on the blacklist.") ;
113 // Assuming you’ve already approved this contract to spend ‘amountIn ‘ of ‘

tokenIn ‘
114
115 // Transfer the specified amount of tokenIn to this contract.
116 Tran s f e rH e l p e r . s a f eT ran s f e rF rom (token In , msg . sender , address (t h i s) , amountIn) ;
117 // Approve the router to spend tokenIn.
118 Tran s f e rH e l p e r . s a f eApprove (token In , address (un i swapRoute r) , amountIn) ;

11/18 PeckShield Audit Report #: 2023-275

Public

119
120 address [] memory path = new address [] (2) ;
121 path [0] = token I n ;
122 path [1] = tokenOut ;
123
124 // Calculating the fee
125 uint256 commiss ion = ca l cu l a t eCommi s s i on (amountIn) ;
126 uint256 amount InAfterCommiss ion = amountIn − commiss ion ;
127
128 uint256 d e a d l i n e = block . timestamp + dead l i neDe layT ime ;
129 u in t [] memory amounts = un i swapRouter . swapExactTokensForTokens (
130 amount InAfterCommiss ion ,
131 amountOutMin ,
132 path ,
133 to ,
134 d e a d l i n e
135) ;
136
137 i f (commiss ion > 0) {
138 // Transfer the fee to the revCommissionWallet
139 IERC20 (t ok en I n) . t r a n s f e r (revCommiss ionWal l e t , commiss ion) ;
140 }
141
142 emit TradeSuccess (msg . sender , token In , tokenOut , amountIn , amounts [1] , to , commiss ion ,

code) ;
143 }

Listing 3.1: UXSwapV1::trade()

Note other trade-related routines tradeForETH()/tradeSupportingFee() routines in the same con-
tract share the same issue.

Recommendation Revise the above-mentioned routines to properly set up the token allowance.

Status The issue has been fixed by following the above suggestion.

3.2 Accommodation of Non-ERC20-Compliant Tokens

• ID: PVE-002

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: UXSwapV1

• Category: Coding Practices [4]

• CWE subcategory: CWE-1126 [1]

Description

Though there is a standardized ERC-20 specification, many token contracts may not strictly follow the
specification or have additional functionalities beyond the specification. In this section, we examine

12/18 PeckShield Audit Report #: 2023-275

Public

the approve() routine and analyze possible idiosyncrasies from current widely-used token contracts.
In particular, we use the popular stablecoin, i.e., USDT, as our example. We show the related

code snippet below. On its entry of approve(), there is a requirement, i.e., require(!((_value != 0)

&& (allowed[msg.sender][_spender] != 0))). This specific requirement essentially indicates the need
of reducing the allowance to 0 first (by calling approve(_spender, 0)) if it is not, and then calling a
second one to set the proper allowance. This requirement is in place to mitigate the known approve()/

transferFrom() race condition (https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729).

194 /**
195 * @dev Approve the passed address to spend the specified amount of tokens on behalf

of msg.sender.
196 * @param _spender The address which will spend the funds.
197 * @param _value The amount of tokens to be spent.
198 */
199 f unc t i on approve (address _spender , u in t _value) pub l i c on l yPay l o adS i z e (2 ∗ 32) {

201 // To change the approve amount you first have to reduce the addresses ‘
202 // allowance to zero by calling ‘approve(_spender , 0)‘ if it is not
203 // already 0 to mitigate the race condition described here:
204 // https :// github.com/ethereum/EIPs/issues /20# issuecomment -263524729
205 r equ i r e (! ((_value != 0) && (a l l owed [msg . sender] [_spender] != 0))) ;

207 a l l owed [msg . sender] [_spender] = _value ;
208 Approva l (msg . sender , _spender , _value) ;
209 }

Listing 3.2: USDT Token Contract

Because of that, a normal call to approve() is suggested to use the safe version, i.e., safeApprove()
, In essence, it is a wrapper around ERC20 operations that may either throw on failure or return false
without reverts. Moreover, the safe version also supports tokens that return no value (and instead
revert or throw on failure). Note that non-reverting calls are assumed to be successful. Similarly,
there is a safe version of transfer() as well, i.e., safeTransfer().

38 /**
39 * @dev Deprecated. This function has issues similar to the ones found in
40 * {IERC20 -approve}, and its usage is discouraged.
41 *
42 * Whenever possible , use {safeIncreaseAllowance} and
43 * {safeDecreaseAllowance} instead.
44 */
45 function safeApprove(
46 IERC20 token ,
47 address spender ,
48 uint256 value
49) internal {
50 // safeApprove should only be called when setting an initial allowance ,
51 // or when resetting it to zero. To increase and decrease it, use
52 // ’safeIncreaseAllowance ’ and ’safeDecreaseAllowance ’

13/18 PeckShield Audit Report #: 2023-275

Public

53 require(
54 (value == 0) (token.allowance(address(this), spender) == 0),
55 "SafeERC20: approve from non -zero to non -zero allowance"
56);
57 _callOptionalReturn(token , abi.encodeWithSelector(token.approve.selector ,

spender , value));
58 }

Listing 3.3: SafeERC20::safeApprove()

In current implementation, if we examine the UXSwapV1::tradeForETH() routine that is designed to
trade tokens for ETH. To accommodate the specific idiosyncrasy, there is a need to use safeTransfer(),
instead of transfer() (line 98).

66 function tradeForETH(
67 address tokenIn ,
68 uint256 amountIn ,
69 uint256 amountOutMin ,
70 address to ,
71 int256 code
72) external {
73 require (! _blacklist[msg.sender], "User is on the blacklist.");
74 // Transfer the specified amount of tokenIn to this contract.
75 TransferHelper.safeTransferFrom(tokenIn , msg.sender , address(this), amountIn);
76 // Approve the router to spend tokenIn.
77 TransferHelper.safeApprove(tokenIn , address(uniswapRouter), amountIn);
78
79 address [] memory path = new address [](2);
80 path [0] = tokenIn;
81 path [1] = WETH;
82
83 // Calculating the fee
84 uint256 commission = calculateCommission(amountIn);
85 uint256 amountInAfterCommission = amountIn - commission;
86
87 uint256 deadline = block.timestamp + deadlineDelayTime;
88 uint[] memory amounts = uniswapRouter.swapExactTokensForETH(
89 amountInAfterCommission ,
90 amountOutMin ,
91 path ,
92 to ,
93 deadline
94);
95
96 if (commission > 0) {
97 // Transfer the fee to the revCommissionWallet
98 IERC20(tokenIn).transfer(revCommissionWallet , commission);
99 }

100
101 emit TradeSuccess(msg.sender ,tokenIn ,path[1],amountIn ,amounts [1],to,commission ,

code);

14/18 PeckShield Audit Report #: 2023-275

Public

102 }

Listing 3.4: UXSwapV1::tradeForETH()

Note other trade-related routines trade()/tradeSupportingFee() routines in the same contract can
be similarly improved.

Recommendation Accommodate the above-mentioned idiosyncrasy about ERC20-related
transfer().

Status This issue has been fixed by following the above suggestion.

3.3 Trust Issue of Admin Keys

• ID: PVE-003

• Severity: Medium

• Likelihood: Low

• Impact: Medium

• Target: UXSwapV1

• Category: Security Features [3]

• CWE subcategory: CWE-287 [2]

Description

In UXSwapV1, there is a privileged administrative account (super operator). The administrative account
plays a critical role in governing and regulating the protocol-wide operations. Our analysis shows
that this privileged account needs to be scrutinized. In the following, we use the UXSwapV1 contract
as an example and show the representative functions potentially affected by the privileges of the
administrative account.

323 function addToBlacklist(address _user) public isSuperOperator {
324 require (! _blacklist[_user], "User is already on the blacklist.");
325 require(
326 _user != address(UNISWAP_V2_ROUTER),
327 "Cannot blacklist token ’s v2 router."
328);
329 _blacklist[_user] = true;
330 }
331
332 function removeFromBlacklist(address _user) public isSuperOperator {
333 require(_blacklist[_user], "User is not on the blacklist.");
334 delete _blacklist[_user];
335 }
336
337 /// @notice Allows super operator to update super operator
338 function authorizeOperator(address _operator) external isSuperOperator {
339 superOperators[_operator] = true;
340 }
341

15/18 PeckShield Audit Report #: 2023-275

Public

342 /// @notice Allows super operator to update super operator
343 function revokeOperator(address _operator) external isSuperOperator {
344 superOperators[_operator] = false;
345 }
346
347 function setDeadlineDelayTime(uint256 _time) external isSuperOperator {
348 deadlineDelayTime = _time;
349 }
350
351 function setRevCommissionWallet(address _to) external isSuperOperator {
352 emit RevCommissionWalletUpated(_to , revCommissionWallet);
353 revCommissionWallet = _to;
354 }
355
356 function withdrawStuckToken(address _token , address _to) external isSuperOperator {
357 require(_token != address (0), "_token address cannot be 0");
358 uint256 _contractBalance = IERC20(_token).balanceOf(address(this));
359 IERC20(_token).transfer(_to , _contractBalance);
360 }
361
362 function withdrawStuckEth(address toAddr) external isSuperOperator {
363 (bool success ,) = toAddr.call{
364 value: address(this).balance
365 } ("");
366 require(success);
367 }
368
369 function setWETH(address tokenAddr) external isSuperOperator{
370 WETH = tokenAddr;
371 }

Listing 3.5: Example Privileged Operations in UXSwapV1

We understand the need of the privileged functions for contract maintenance, but at the same
time the extra power to the administrative account may also be a counter-party risk to the protocol
users. It would be worrisome if the privileged administrative account is a plain EOA account. Note
that a multi-sig account could greatly alleviate this concern, though it is still far from perfect.
Specifically, a better approach is to eliminate the administration key concern by transferring the role
to a community-governed DAO.

Recommendation Promptly transfer the privileged account to the intended DAO-like governance
contract. All changes to privileged operations may need to be mediated with necessary timelocks.
Eventually, activate the normal on-chain community-based governance life-cycle and ensure the in-
tended trustless nature and high-quality distributed governance.

Status The issue has been confirmed.

16/18 PeckShield Audit Report #: 2023-275

Public

4 | Conclusion

In this audit, we have analyzed the design and implementation of the UXSwap contract, part of
UXLINK that is a block-chain based social system for mass adopters to build social assets and trade
cryptoswith. It shares the vision to be a trusted infrastructure product for mass adoption of inclusive
finance and trading. The audited UXSwap contract is a wrapper to interact with UNISWAP_V2_ROUTER for
token swaps. The current code base is well structured and neatly organized. Those identified issues
are promptly confirmed and addressed.

Meanwhile, we need to emphasize that Solidity-based smart contracts as a whole are still in
an early, but exciting stage of development. To improve this report, we greatly appreciate any
constructive feedbacks or suggestions, on our methodology, audit findings, or potential gaps in
scope/coverage.

17/18 PeckShield Audit Report #: 2023-275

Public

References

[1] MITRE. CWE-1126: Declaration of Variable with Unnecessarily Wide Scope. https://cwe.mitre.

org/data/definitions/1126.html.

[2] MITRE. CWE-287: Improper Authentication. https://cwe.mitre.org/data/definitions/287.html.

[3] MITRE. CWE CATEGORY: 7PK - Security Features. https://cwe.mitre.org/data/definitions/

254.html.

[4] MITRE. CWE CATEGORY: Bad Coding Practices. https://cwe.mitre.org/data/definitions/

1006.html.

[5] MITRE. CWE VIEW: Development Concepts. https://cwe.mitre.org/data/definitions/699.html.

[6] OWASP. Risk Rating Methodology. https://www.owasp.org/index.php/OWASP_Risk_Rating_

Methodology.

[7] PeckShield. PeckShield Inc. https://www.peckshield.com.

18/18 PeckShield Audit Report #: 2023-275

https://cwe.mitre.org/data/definitions/1126.html
https://cwe.mitre.org/data/definitions/1126.html
https://cwe.mitre.org/data/definitions/287.html
https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/699.html
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.peckshield.com

	Introduction
	About UXSwap
	About PeckShield
	Methodology
	Disclaimer

	Findings
	Summary
	Key Findings

	Detailed Results
	Improved Allowance Management in UXSwapV1
	Accommodation of Non-ERC20-Compliant Tokens
	Trust Issue of Admin Keys

	Conclusion
	References

